Rescue of myogenic defects in Rb-deficient cells by inhibition of autophagy or by hypoxia-induced glycolytic shift
Ciavarra G, Zacksenhaus E.
J Cell Biol,
2010
The retinoblastoma tumor suppressor (pRb) is thought to orchestrate terminal differentiation by inhibiting cell proliferation and apoptosis and stimulating lineage-specific transcription factors. In this study, we show that in the absence of pRb, differentiating primary myoblasts fuse to form short myotubes that never twitch and degenerate via a nonapoptotic mechanism. The shortened myotubes exhibit an impaired mitochondrial network, mitochondrial perinuclear aggregation, autophagic degradation, and reduced adenosine triphosphate production. Bcl-2 and autophagy inhibitors restore mitochondrial function and rescue muscle degeneration, leading to formation of long, twitching myotubes that express normal levels of muscle-specific proteins and stably exit the cell cycle. A hypoxia-induced glycolytic switch also rescues the myogenic defect after either chronic or acute inactivation of Rb in a hypoxia-inducible factor-1 (HIF-1)-dependent manner. These results demonstrate that pRb is required to inhibit apoptosis in myoblasts and autophagy in myotubes but not to activate the differentiation program, and they also reveal a novel link between pRb and cell metabolism.
- Journal
- J Cell Biol
- Year
- 2010
- Page
- 291-301
- Institute
- U Toronto
Referenced Products
Product | Cat No. |
---|---|
Ad-CMV-iCre | 1045 |
Vector Biolabs
293 Great Valley Parkway
Malvern, PA 19355
Email: info@vectorbiolabs.com
Phone: +1 484-325-5100
Toll-free (US Only): 877-BIO-LABS
Fax: +1 215-525-1112
Privacy Policy