O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis
K Taparra, etc
JCI,
2018
Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we show in novel autochthonous mouse models that EMT accelerates KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrate that HBP is required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delays KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked ß-N-acetylglucosamine (O-GlcNAcylation) post-translational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerates lung tumorigenesis. Conversely, loss of O-GlcNAcylation delays lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-Myc correlates with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrate that O-GlcNAcylation is sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which is reinforced by epithelial plasticity programs.
- Journal
- JCI
- Year
- 2018
- Page
- doi: 10.1172/JCI94844
- Institute
- Johns Hopkins University
Referenced Products
Product | Cat No. |
---|---|
Ad-CMV-iCre | 1045 |
Vector Biolabs
293 Great Valley Parkway
Malvern, PA 19355
Email: info@vectorbiolabs.com
Phone: +1 484-325-5100
Toll-free (US Only): 877-BIO-LABS
Fax: +1 215-525-1112
Privacy Policy