Non-Canonical Glycosyltransferase Modulates Post-Hypoxic Cardiac Myocyte Death And Mitochondrial Permeability Transition
Ngoha, G., etc.
Journal of Molecular and Cellular Cardiology,
2008
O-linked ß-N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible, and reversible post-translational modification of nuclear and cytoplasmic proteins on Ser/Thr amino acid residues. In addition to its putative role as a nutrient sensor, we have recently shown pharmacologic elevation of O-GlcNAc levels positively affected myocyte survival during oxidant stress. However, no rigorous assessment of the contribution of O-GlcNAc transferase has been performed, particularly in the post-hypoxic setting. Therefore, we hypothesized that pharmacological or genetic manipulation of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc to proteins, would affect cardiac myocyte survival following hypoxia/reoxygenation (H/R). Adenoviral overexpression of OGT (AdOGT) in cardiac myocytes augmented O-GlcNAc levels and reduced post-hypoxic damage. Conversely, pharmacologic inhibition of OGT significantly attenuated O-GlcNAc levels, exacerbated post-hypoxic cardiac myocyte death, and sensitized myocytes to mitochondrial membrane potential collapse. Both genetic deletion of OGT using a cre-lox approach and translational silencing via RNAi also resulted in significant reductions in OGT protein and O-GlcNAc levels, and, exacerbated post-hypoxic cardiac myocyte death. Inhibition of OGT reduced O-GlcNAc levels on voltage dependent anion channel (VDAC) in isolated mitochondria and sensitized to calcium-induced mitochondrial permeability transition pore (mPTP) formation, indicating that mPTP may be an important target of O-GlcNAc signaling and confirming the aforementioned mitochondrial membrane potential results. These data demonstrate that OGT exerts pro-survival actions during hypoxia-reoxygenation in cardiac myocytes, particularly at the level of mitochondria.
- Journal
- Journal of Molecular and Cellular Cardiology
- Year
- 2008
- Page
- 313-325
- Institute
- University of Louisville School of Medicine
Referenced Products
Product | Cat No. |
---|---|
Ad-CMV-iCre | 1045 |
Ad-GFP | 1060 |
Vector Biolabs
293 Great Valley Parkway
Malvern, PA 19355
Email: info@vectorbiolabs.com
Phone: +1 484-325-5100
Toll-free (US Only): 877-BIO-LABS
Fax: +1 215-525-1112
Privacy Policy