Mek1/2 Inhibitors And 17AAG Synergize To Kill Human Gi Tumor Cells In Vitro Via Suppression Of C-Flip-S Levels And Activation Of Cd95

Park MA, etc
Mol Cancer Ther, 2009


Prior studies have noted that inhibitors of MEK1/2 enhanced geldanamycin lethality in malignant hematopoietic cells by promoting mitochondrial dysfunction. The present studies focused on defining the mechanism(s) by which these agents altered survival in carcinoma cells. MEK1/2 inhibitors (PD184352; AZD6244 (ARRY-142886)) interacted in a synergistic manner with geldanamycins (17AAG, 17DMAG) to kill hepatoma and pancreatic carcinoma cells that correlated with inactivation of ERK1/2 and AKT and with activation of p38 MAPK; p38 MAPK activation was ROS-dependent. Treatment of cells with MEK1/2 inhibitors and 17AAG reduced expression of c-FLIP-s that was mechanistically connected to loss of MEK1/2 and AKT function; inhibition of caspase 8 or over-expression of c-FLIP-s abolished cell killing by MEK1/2 inhibitors and 17AAG. Treatment of cells with MEK1/2 inhibitors and 17AAG caused a p38 MAPK-dependent plasma membrane clustering of CD95 without altering the levels or cleavage of FAS ligand. In parallel, treatment of cells with MEK1/2 inhibitors and 17AAG caused a p38 MAPK-dependent association of caspase 8 with CD95. Inhibition of p38 MAPK or knock down of BID, FADD or CD95 expression suppressed MEK1/2 inhibitor and 17AAG lethality. Similar correlative data were obtained using a xenograft flank tumor model system. Our data demonstrate that treatment of tumor cells with MEK1/2 inhibitors and 17AAG induces activation of the extrinsic pathway and that suppression of c-FLIP-s expression is crucial in transduction of the apoptotic signal from CD95 to promote cell death.

Read more »

Journal
Mol Cancer Ther
Year
2009
Page
doi: 10.1158/1535-7163.MCT-08-0400
Institute
Virginia Commonwealth University