Mechanism of autoimmune hepatic fibrogenesis induced by an adenovirus encoding the human liver autoantigen cytochrome P450 2D6

Edith Hintermann, etc
Journal of Autoimmunity, 2013


Autoimmune hepatitis type 2 (AIH-2) is a severe autoimmune liver disease with unknown etiology. We recently developed the CYP2D6 mouse model for AIH-2, in which mice are challenged with an adenovirus (Ad-2D6) expressing human cytochrome P450 2D6 (hCYP2D6), the major autoantigen in AIH-2. Such mice develop chronic hepatitis with cellular infiltrations and generation of hCYP2D6-specific antibodies and T cells. Importantly, the CYP2D6 model represents the only model displaying chronic fibrosis allowing for a detailed investigation of the mechanisms of chronic autoimmune-mediated liver fibrogenesis. We found that hCYP2D6-dependent chronic activation of hepatic stellate cells (HSC) resulted in an increased extracellular matrix deposition and elevated expression of a-smooth muscle actin predominantly in and underneath the liver capsule. The route of Ad-2D6 infection dramatically influenced the activation and trafficking of inflammatory monocytes, NK cells and hCYP2D6-specific T cells. Intraperitoneal Ad-2D6 infection caused subcapsular fibrosis and persistent clustering of inflammatory monocytes. In contrast, intravenous infection caused an accumulation of hCYP2D6-specific CD4 T cells throughout the liver parenchyma and induced a strong NK cell response preventing chronic HSC activation and fibrosis. In summary, we found that the location of the initial site of inflammation and autoantigen expression caused a differential cellular trafficking and activation and thereby determined the outcome of AIH-2-like hepatic damage and fibrosis.

Read more »

Journal
Journal of Autoimmunity
Year
2013
Page
doi:10.1016/j.jaut.2013.05.001
Institute
Johann Wolfgang Goethe University