Definition of a Skp2-c-Myc Pathway to Expand Human Beta-cells
Shiwani Tiwari, etc
Scientific Reports,
2016
Type 2 diabetes (T2D) is characterized by insulin resistance and reduced functional ß-cell mass. Developmental differences, failure of adaptive expansion and loss of ß-cells via ß-cell death or de-differentiation have emerged as the possible causes of this reduced ß-cell mass. We hypothesized that the proliferative response to mitogens of human ß-cells from T2D donors is reduced, and that this might contribute to the development and progression of T2D. Here, we demonstrate that the proliferative response of human ß-cells from T2D donors in response to cdk6 and cyclin D3 is indeed dramatically impaired. We show that this is accompanied by increased nuclear abundance of the cell cycle inhibitor, p27kip1. Increasing nuclear abundance of p27kip1 by adenoviral delivery decreases the proliferative response of ß-cells from non-diabetic donors, mimicking T2D ß-cells. However, while both p27kip1 gene silencing and downregulation by Skp2 overexpression increased similarly the proliferative response of human ß-cells, only Skp2 was capable of inducing a significant human ß-cell expansion. Skp2 was also able to double the proliferative response of T2D ß-cells. These studies define c-Myc as a central Skp2 target for the induction of cell cycle entry, expansion and regeneration of human T2D ß-cells.
Vector Biolabs
293 Great Valley Parkway
Malvern, PA 19355
Email: info@vectorbiolabs.com
Phone: +1 484-325-5100
Toll-free (US Only): 877-BIO-LABS
Fax: +1 215-525-1112
Privacy Policy