Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation

Xue Yuan, etc
Nature Communications, 2016


Intraflagellar transport proteins (IFT) are required for hedgehog (Hh) signalling transduction that is essential for bone development, however, how IFT proteins regulate Hh signalling in osteoblasts (OBs) remains unclear. Here we show that deletion of ciliary IFT80 in OB precursor cells (OPC) in mice results in growth retardation and markedly decreased bone mass with impaired OB differentiation. Loss of IFT80 blocks canonical Hh–Gli signalling via disrupting Smo ciliary localization, but elevates non-canonical Hh–Gai–RhoA–stress fibre signalling by increasing Smo and Gai binding. Inhibition of RhoA and ROCK activity partially restores osteogenic differentiation of IFT80-deficient OPCs by inhibiting non-canonical Hh–RhoA–Cofilin/MLC2 signalling. Cytochalasin D, an actin destabilizer, dramatically restores OB differentiation of IFT80-deficient OPCs by disrupting actin stress fibres and promoting cilia formation and Hh–Gli signalling. These findings reveal that IFT80 is required for OB differentiation by balancing between canonical Hh–Gli and non-canonical Hh–Gai–RhoA pathways and highlight IFT80 as a therapeutic target for craniofacial and skeletal abnormalities.

Read more »

Journal
Nature Communications
Year
2016
Page
doi:10.1038/ncomms11024
Institute
University of Buffalo