Cytochrome P450 2B1 mediates complement-dependent sublytic injury in a model of membranous nephropathy
Liu H, etc
J Biol Chem,
2010
Membranous nephropathy is a disease that affects the filtering units of the kidney, the glomeruli, and results in proteinuria accompanied by loss of kidney function. Passive Heymann nephritis is an experimental model that mimics membranous nephropathy in humans, wherein the glomerular epithelial cell (GEC) injury induced by complement C5b-9 leads to proteinuria. We examined the role of cytochrome P450 2B1 (CYP2B1) in this complement-mediated sublytic injury. Overexpression of CYP2B1 in GECs significantly increased the formation of reactive oxygen species, cytotoxicity, and collapse of the actin cytoskeleton following treatment with anti-tubular brush-border antiserum (anti-Fx1A). In contrast, silencing of CYP2B1 markedly attenuated anti-Fx1A-induced reactive oxygen species generation and cytotoxicity with preservation of the actin cytoskeleton. Gelsolin, which maintains an organized actin cytoskeleton, was significantly decreased by complement C5b-9-mediated injury but was preserved in CYP2B1-silenced cells. In rats injected with anti-Fx1A, the cytochrome P450 inhibitor cimetidine blocked an increase in catalytic iron and ROS generation, reduced the formation of malondialdehyde adducts, maintained a normal distribution of nephrin in the glomeruli, and provided significant protection at the onset of proteinuria. Thus, GEC CYP2B1 contributes to complement C5b-9-mediated injury and plays an important role in the pathogenesis of passive Heymann nephritis.
Vector Biolabs
293 Great Valley Parkway
Malvern, PA 19355
Email: info@vectorbiolabs.com
Phone: +1 484-325-5100
Toll-free (US Only): 877-BIO-LABS
Fax: +1 215-525-1112
Privacy Policy